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Abstract 

New methods are introduced for improving the performance of the 

vectorized Monte Carlo SU(3) lattice gauge theory algorithm using the 

CDC CYBER 205. Structure, algorithm and programming considerations are discussed. 

The performance achieved for a 164 lattice on a 2-pipe system may be phrased 

in terms of the link update time or overall MFLOPS rates. For 32-bit arithmetic 

it is 36.3 usec/link for 8 hits per iteration (40.9 zsec for 10 hits) or 

101.5 MFLOPS. 
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1. Introduction 

Many important results for quantum field theories in general and, in 

particular, for the gauge theory of strong interactions known as Quantum 

Chromodynamics (QCD) have been obtained by formulating the dynamics on a 

space-time lattice. The lattice version of a quantized gauge field theory, 

as proposed by Wilson Cl], has the properties of introducing an ultraviolet 

cut-off independently of any perturbative expansion and of preserving 

manifest gauge invariance. It permits a variety of investigations by 

non-perturbative techniques, strong-coupling expansions [2] and Monte 

Carlo (MC) simulations [3] being the most notable ones. Monte Carlo 

simulations, indeed, have probably produced the most important results 

for QCD, being able to probe the structure of the theory in the domain 

where the transition between the strong-coupling behavior at large distances 

and the asymptotically-free behavior at small separation takes place 

Numerical methods must be used to explore the vary crucial domain 

of intermediate couplings, since there are no known analytical techniques 

for solving or even efficiently approximating gauge theories throughout 

that region. On the other hand the fact that quantum fluctuations on 

a finite lattice extending for n sites in four dimensions are given 

by integrals of a dimensio 

parameters in group space) 

importance sampling, i.e. 

possibility. 

nality 4n4ng (rig is the number of independent 

, which can easily exceed 2,000,000, leaves 

Monte Carlo simulations, as the only calculational 

Monte Carlo calculations are of a numerical nature, and quite 

demanding on computational resources. The simulation of a system with 

SU(3) gauge group (i.e. the system underlying QCD) on a lattice extending 

for n sites in each of the four space-time dimensions requires storage 

of 4n4 link variables, i.e. 4n4 SU(3) matrices, and the systematic 
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replacement, or "upgrading", of each of these matrices with new, updated 

values, for several hundred or several thousand sweeps of the whole 

lattice. One MC iteration is defined as a sweep of the lattice, i.e., 

one upgrade per link variable. A computation involving M MC iterations 

thus implies 4Mn4 individual upgrades of SU(3) matrices. The upgrading 

of each SU(3) matrix requires approximately 4,150 elementary arithmetic 

operations and 180 table look-ups (if 10 attempts at changing the link 

variable are made for each upgrade). For a lattice large enough for 

obtaining physically meaningful results, the amount of computation needed 

for a Monte Carlo simulation of QCD becomes extremely high. 

Because of the aforementioned difficulties, Monte Carlo simulations 

of QCD have been generally limited to lattices of rather small extent, 

a lattice of 84 sites already representing a large lattice with respect 

to the scale of most calculations. On the other hand, with the progress 

in the field, it has become apparent that one must definitely analyze 

larger systems to develop confidence in the numerical results. This need 

may be understood on physical grounds. If 2 GeV is considered as a 

universal energy for the effects of asymptotic freedom to begin manifesting 

themselves, one would like the lattice spacing to be smaller than (2GeV)-' 

(and the corresponding ultraviolet cut-off larger than 2GeV) i.e. smaller 

than O.lfm. Conversely, if the goal of the computations is to determine 

hadronic structure, the extent of the lattice should be larger than the 

typical size of a hadron. Taking this size to be (minimally) 1 fm, 

it becomes apparent that the parameter n ought to be larger, if possible 

substantially larger, than 10. With, e.g., n = 16 and M : 1000 the 

calculation of a MC simulation requires more than 10 12 operations not a 

small task even for the largest machines currently available. 
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The number of the data elements involved, and the amount of 

computations needed for manipulating this data, makes it worth while 

to investigate ways for vectoritation of the code. 

The purpose of this article is to illustrate the vectorization and 

implementation on the CDC CYBER 205 of a code for Monte Carlo simulations 

of the.SU(3) lattice gauge theory. (For previous implementations of 

vectorized code see Ref.4.) As will be discussed in more detail in 

the final section of this paper, the characteristics and performance are 

such that 1 MC iteration of a 164 lattice can be done in 10.72 seconds 

(corresponding to an upgrade time of 40.9 usec per SU(3) link variable). 

Thus, 164 and larger lattices can be considered for meaningful 

simulations of QCD. While we describe in this article the program for 

the basic Monte Carlo algorithm, we are currently using it, together 

with other vectorized codes, for a reevaluation on a large lattice, of 

several quantities of theoretical and phenomenological interest in QCD. 

The results of these investigations will be presented separately [S]. 

Here we proceed with a description of the computational algorithm and 

an outline of its vectorization in Sect. 2, with a more detailed 

account of the program in Sect. 3 and a summary of performance data in 

Sect. 4. 

2. The Monte Carlo Algorithm 

We consider a hypercubical lattice of ns sites in each of the 

three spatial directions and nt sites in the temporal one. The 

dynamical variables of the SU(3) gauge theory are 3x3 unitary- 

unimodular complex matrices, which are associated with the 4nlnt links 

of the lattice. We denote by Vi the matrix associated with the 
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oriented link coming out of the lattice site of (integer) coordinates 

X E (Xl sX~,X~SX~) in the direction u (u=l,2,3,4). The goal of the 

Monte Carlo algorithm is to produce a stochastic sequence of configurations 

of the system C(i), (a configuration being defined as the collection 

of all Ug), such that the probability P(C) of encountering any 

configuration C in the sequence approaches, after a reasonable 

equilibriation time, the distribution 

P(C) J exp{-S(C)3 , (2.1) 

where S is the action of the configuration C in that sequence. S 

is given by a sum over plaquette variables p , a plaquette being an 

oriented square of the lattice defined by the origin x and two directions 

lJ and v : 

5 = x.5 
Pp 

= 6 z(1 
P 

- f Re Tr Up) , 

where 

(2.2) 

(2.3) 

3 is the coupling parameter and z ,G stand for unit lattice 

vectors in the L and ‘J directions, respectively. When Eqn. 2.1 is satisfied, 

quantum mechanical expectation values of observables e, defined rigorously 

as averages over all possible configurations, namely 
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<6; = z -1 
I 

TI dU;) u(U)exp[-S(U)] 
X,!J 

(2.4) 

with 

Z = '( II Ui)exp[-S(U)] , 
1 

(2.5) 
X,lJ 

can be approximated by averages taken over the configurations generated 

by the Monte Carlo algorithm: 

6'(C(')) . (2.6) 

NO represents the number of initial configurations discarded in order 

to allow for the stochastic sequence to reach equilibrium. 

In our code we implement the MC algorithm following the method of 

Metropol 

replaced 

s et al [6]. Each individual dynamical variable Ui is 

by a new one uz" x according to the following procedure: 

candidate matrix Ui' is obtained from Ui by group multiplication: 

U,"' = RkU; , 

i) a net 

where Rk is an W(3) matrix randomly selected from a prepared set 

CR, , . . . , RF11 of M matrices, to be discussed later. 
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ii)' the change in action, AS induced by the variation IJF + Ui ' 

is calculated: 

AS = s(u;’ ,.. .)-s(u; ,... ); (2.7) 

iii) a pseudorandom number r with uniform distribution between 0 

and 1 is generated and 

;uQjJ . if 
X 

x r < exp(-AS) , 

$J = uu otherwise. 
X X 

The steps i) to iii) define what is ca ,lled a "hit" on one of the 

variables. These steps are repeated Nh (number of hits) times. 

link 

This 

completes the upgrading of one (link) variable UF . One MC iteration 

(or one sweep of the lattice) is executed when all the variables have 

been processed in this manner. 

A crucial consideration for the whole algorithm and also for its 

vectorization is that the calculation of the variation of the action 

AS involves only a few of the dynamical variables apart from Ui 

itself, namely those defined on the remaining links of the six 

plaquettes which share the link between x and x+c . It is 

convenient to be slightly detailed at this point and to introduce some 

terminology. Given the link from x to x+G there are three 

"forward" plaquettes incident on it, namely those with vertices 

LI ,. A A 
x, x+-i, X+!l+‘J and x+v , 
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(v taking the three values # u) and three "backward" plaquettes, 

namely those with vertices 

h 
x, x+lJ, x+1;-; and x-G , 

(see Fig. 1). 

We shall define as the "force" acting on Ui the sum of the expressions 

Fuv = Uu+A Uu A Uv 
f,x x+!J x+LJ x 

(corresponding to the forward plaquettes) and 

pJ vt 

b ,x = u;+;-;";-;ux-; 

(corresponding to the backward plaquettes) over the three values of 

VflJ 

(2.8) 

(2.9) 

(2.10) 

One can easily convince oneself that of the terms contributing to the 

action in Eqn. 2.2 all those containing UF can be written in the form 

BL.1 - f ReTr(Fg*Uz)] , (2.11) 

and therefore 
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As = - 4 ReTr[Fit(Ui'- Ui)] . (2.12) 

Thus, we become aware of two fundamental facts: 

i) once the force FI is calculated, the Nh subsequent hits on 

the link variable Uy can be done without any further recourse to the 

values of other U variables. 

ii) several upgradings can be done in parallel, provided only that the 

forces Fi required for the computation do not involve any of the IJZ 

variables that are simultaneously upgraded. 

While point i) is relevant for any MC simulation, point ii) acquires 

particular importance if one wants to write a vectorized code. Indeed, 

as we shall show, all Us: variables with fixed u can be separated into 

two sets such that the forces for one set only involve elements of the other. 

Then, all the Ut variables belonging to one set can be grouped together 

in an array and upgraded simultaneously. Finally one proceeds to upgrade 

the elements of the other set (the red-black or checkerboard algorithm 

[4]). We will see in the next section that the ability to separate 

the link variables into two independent sets is a key to efficient vector- 

ization. 

3. The Vectorized Implementation of the Algorithm 

The previous discussion has demonstrated that Monte Carlo lattice 

gauge theories are worthy candidates for vector processing. Until recently, 

however, people were doubtful as to whether the vector capabilities of current 
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supercomputers can be effectively utilized for such applications. The 

main source for this skepticism is the inherent conflict between random 

access to data, an integral part of a Monte Carlo process, and the strict 

order of data elements required for pipelined computations. In other words, 

unless data can be "gathered" at rates comparable to computation rates no 

efficient vectorization can be achieved. 

One of the major strengths of the CDC CYBER 205, and what makes it 

a particularly powerful Monte Carlo machine, is the ability to order a 

random collection of data by means of a vector instruction, namely, the 

"Gather" instruction. This instruction is equivalent to a series of 

random, or, indirect "load" operations on a serial computer. The 

Gather instruction uses a vector of integers as an "index-list" 

pointing to the elements to be fetched. These elements are stored 

in the order they have been encountered into an output vector. The 

result rate for the Gather operation is one element every 1.25 

cycles (a cycle, or clock-period on the CDC CYBER 205 is 20 nanoseconds). 

For a comparison, note that the floating-point arithmetic rate, excluding 

division, is one element every cycle per pipe for 64-bit operands. The 

CYBER 205 hardware also supports 32-bit operations with twice the 

result rate for vector floating-point operations. For example, on a 

two pipe machine 32-bit arithmetic is performed at a rate of 5 nsec 

per result, or 200 MFLOPS. 

The effective utilization of the computational tools build into 

the vector processor is closely related to the data structure, as are 

most of the important algorithmic decisions. It is, therefore, 

appropriate, at this point, to discuss the memory requirements. A 

3x3 complex matrix is represented by 18 real numbers. The constraints 
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of being unitary and unimodular reduce the number of independent para- 

meters to 8, but such a minimal representation of the Ut variables 

implies a substantial increase in the computational complexity. To obtain 

optimal performance it is useful to keep all the 18 values representing 

the real and imaginary parts of the elements of IJ: . For a lattice 

with ns = nt = 16 a configuration will be defined by 18 x 4 x 164 = 

4.718592 million values, which may be more than can be put in the fast 

memory of many computer systems. Fortunately, the sequential nature of 

the MC algorithm suggests that only a fraction of the variables need 

to be in memory at any one time. The others can be kept on disk. 

The factors which determine an optimal size for the partition between 

variables in memory and on disk are the following: 

i) the partition should not make the code unnecessarily complicated; 

ii) the I/O operations should not take longer than the actual computations; 

iii)sufficiently long vectors should be available. 

On the basis of the above requirements we decided to upgrade one 

space at a time, i.e. to upgrade all the 4nz variables UI with fixed 

time coordinate x4 , and then to proceed to the next x4 etc. We 

shall refer to this procedure as time-slicing and to the collection of 

variables with fixed time coordinate x4 as one time-slice of the system. 

If the variables with a given x4 = t are being upgraded, the 

calculation of the force requires knowledge of the Ui with x4 = t-l, 

x4 = t and x4 = t+l . Thus 3 time slices need to be in memory 

throughout this stage of the calculation. As a matter of fact, since 

I/O operations can proceed independently from CPU operations, it 
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is possible to achieve concurrency of I/O and CPU operations if 

extra memory buffer space is allocated for holding the x4 = t-2 slice 

(to be written out), and the x4 = t+2 slice (to be read in). The 

conventional way of implementing concurrent I/O is to allocate space 

for two more slices. The resulting five slices in memory act as a 

circular buffer as shown in Fig. 2. However, the virtual memory hardware 

on the CDC CYBER 205, and the supporting software provide the capability 

to swap data between disk and memory. Hence, the memory area of one 

slice only is needed to write out the x4 = t-2 slice, and read in 

the x4 = t+2 slice. Consequently, the total memory requirements for 

the link variables are thus 4 x n: x 4 x 18 locations. Allowing for some 

additional work-space we find that lattices with ns = 16 can be 

considered in a machine with 2m words (16m bytes) in full precision 

(64-bit words) and ns = 20 in half precision (32-bit words). The length 

in time does not constitute a problem any longer and lattices with any nt 

may be simulated. 

With the slicing mechanism in place we now turn to vectorization 

aspects of the code. In Sec. 2, the Red-Black ordering was introduced. 

The motivation for this choice merits some discussion. The computation 

involves, mainly, matrix multiplications. This operation is easily 

vectorized, but the matrices concerned are 3x3 matrices, and the resulting 

vectors are going to be 3 elements long. For efficiently vectorized code 

one needs to seek longer vectors. This results from the observation 

that the timing formula for a vector instruction may be written as 

(Start-up + 3-N) cycles (3.1) 
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where the start-up time is a constant, independent of the vector length. 

It amounts to aligning the input and output streams, filling up the 

pipelines up to the point where the first result is available and storing 

the last result. The start-up time is also independent of the number of 

pipe1 ines and whether 64-bit or 32-bit arithmetic is performed. On the 

CDC CYBER 205 it amounts to about 50 cycles, or 1 gsec. The “a.N” term 

is known as the "stream time". N is the number of elements in the vector, 

so that the stream time is proportional to the vector length. a is a 

constant associated with the number of pipelines and the arithmetic mode. 

Table 3.1 contains the a values for some relevant circumstances. 

It is now obvious that high performance is achieved by minimizing the number 

of "start-ups" as a consequence of using longer vectors, or, increasing 

N for each vector operation. 

The SU(3) matrices are too small as an object for vectorization; 

however, there are nl such matrices in every time slice. One cannot 

use all of these link values simultaneously because - 

i) updating each link requires all its irrrnediate neighbors, and 

ii) the correct convergence of the Metropolis process depends upon 

using "new" values as soon as they are available. 

The Red-Black (checker-board) ordering resolves this apparent recursive 

relationship. The separation of the Ui variables into two sets, for 

each value of u and at fixed x4 , is achieved by putting in the two 

sets all the variables belonging to links originating from odd and even 

sites, respectively, i.e. with x1 + x2 + x3 = 1 or 0 (mod 2). This 

assures the independence of the forces FE from the variables Ut being 

upgraded. On a lattice with ns = 16 the above separation gives a vector 

length of ni/2 = 2048, sufficiently large to insure almost optimal 
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performance (in fact, 91% and 95% in 32-bit and 64-bit arithmetic, 

respectively). The calculation of the force FI requires knowledge 

of the Ui variables associated with links neighboring the one under 

consideration. Because of boundary conditions , which we take to be periodic, 

the variables which enter the calculation of FE will not, in general, 

have a simple location-index relative to UI in the array of dimension 

nz/2 . This is easily remedied by the introduction of auxiliary 

integer-valued arrays, where the indices of the various neighbors of 

Uu 
X 

are prestored. The Gather instruction plays a crucial role in the 

way these index arrays are used. When Fi is evaluated, all the 

needed variables are gathered into temporary arrays, so that the indices 

of all elements entering into the computation of FF are the same, and 

this proceeds in a fully vectorized manner. 

Once,the Fy's are determined the algorithm for the upgrading 

of all the U';: (in the same set) is straightforward and completely 

vectorizable. The matrices R which are used for finding the new 

candidates IJY' , are Gathered according to an array of indices extracted 

at random from a table. The table contains M SU(3) matrices which have 

a distribution centered around the identity of the group and are obtained 

in the following fashion. For each value of i between 1 and M/2 

(M must be even) an eight component vector Vk with approximately 

gaussian distribution and <VE> = 1 is pseodoramdomly generated. The 

fourth-order approximation to Ri is given by 

R" - 
2 4 

i- 
ltiA-$-$+& 

(3.2) 
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where 

A = b ii VkXk * (3.3) 

'k are Gell-Mann's matrices (i.e., a set of generators of the Lie 

algebra of SU(3)) and b is a real parameter specifying the spread 

of the distribution. The final value for Ri is obtained by normalizing 

R0 i to a unitary-unimodular matrix. In general, if we denote the 

three columns of an SU(3) matrix by y1,F2 and "; the constraint 

of being unitary and uni modular is expressed by 

I2 = \";I2 = 1 IF1 

2 
rl . ;* = 0 2 

and 

ith the first two co Given a matrix R" w 

-0-o 
rlxr2 # 0 , we shall 

R with columns 

define as the nor-ma 

and 

= (+r2)* . 

-0 lumns rl 4 and r2 , with 

lized form of R" the matrix 

r /I- JO2 
1 = q/ ,rl I 

(3.4) 

(3.5) 
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The reason for the nonmenclature is due to the fact that, if R" differs 

slightly from a unitary-unimodular matrix, e.g. as a consequence of 

roundoff errors, then R is an SU(3) matrix close in value to R0 

imodular matrix R0 
i obtained by Thus, the approximately unitary-un 

truncated exponentiation in Eqn. 3 

matrix Ri by normalization. The 

.2 is converted to a proper SU(3) 

last M/2 matrices are obtained by 

(3.6) 

so as to insure that, together with any given matrix Ri , the inverse 

should also belong to the table. 

The procedure for normalizing the SU(3) matrices of the random 

table, as described above, is also applied, every few iterations, to the 

link matrices. This is done to insure that the group symmetry of the 

matrices is preserved regardless of rounding errors which may be 

introduced by the hardware after many arithmetic operations. This 

renormalization process is particularly important when the computations 

are performed using low precision arithmetic. It gives us confidence, which 

was also tested and verified, in using 32-bit arithmetic for our calcul- 

ations on the CDC CYBER 205. 

Once UF' is determined, using the table of random SU(3) 

matrices, the action difference is obtained by calculating, separately, 

ReTr(FzLUz) and ReTr(Fi;UE') 

(notice that ReTr(A'B) is the vector product of the arrays containing 
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the real and imaginary parts of A and B) , forming an array with 

exp[-AS) , comparing with an array of pseudorandom numbers and 

accepting or rejecting the change, via a masking operation, according 

to the outcome of the vectorized comparison between the random numbers 

and the exponentiated action differences. These steps are repeated 

for a prefixed number of hits before commencing the upgrade of the other 

set or the variables corresponding to different directions. 

The conditional acceptance of elements in a vector, or, the masking 

operation referred to above, is handled through the usage of a "bit-vector" 

(the CDC CYBER 205 is bit addressable and the software allotis the Fortran 

user to use this feature). It is exploited as a part of the vector 

instruction, and inhibits storing results where zeros are encountered- 

in the bit-vector. 

The reader should by now realize that many thousands of random 

numbers are required for each iteration. The conventional congruent 

method for generating random numbers is recursive, and may be described 

by 

yi+l = (asyi)mod(b) (3.7) 

where a is the "multiplier" and b is determined so as yi+l will 

be approximately the lower half of the coefficient of the product a.yi 

The nature of this calculation suggests that in order to produce N 

random numbers one has to repeat it serially N times. There is, 

however, a way to reproduce the same sequence of N numbers in 

parallel, using vector instructions [7]. Define a new multiplier by 
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A = (aN)mod(b) 

= (...(a*a)mod(b)*a)mod(b)...*a)mod(b) 

and let 

11 = (yl+‘“*‘YN) 

be the vector containing the first N random numbers. 

Then 

lit1 = (A*li)mod(b) 

(3.8) 

(3.9) 

(3.10) 

reproduces the same sequence of random numbers one gets with a 

repeated application of Eqn. 3.7 (the computation of Eqn. 3.10 requires 

only 3 vector operations on the CDC CYBER 205). 

To conclude this section, let us discuss the way matrix multiplication 

is done, being the most time-consuming aspect of the computation . First, 

the reader will remember that we do not vectorize the matrix multiplication 

as such, but, rather, perform the operations on many matrices in parallel, 

where for each matrix the "scalar" sequence of operations is followed. 

When computing the products of two SU(3) matrices, one need not 

evaluate all the columns of the result, since the third column of the 

product matrix (which is again unitary-unimodular) is related to the 

first two by Eqn. 3.4. In the code we have exploited this fact whenever 

possible. It is particularly advantageous when several SU(3) matrices 

must be multiplied together, since one may limit the calculations to 

two columns out of three in all intermediate products and simply 

reconstruct the third column of the final result as shown in Eqn. 3.4. 
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Finally, all complex arithmetic has been done in terms of real 

variables, separating real and imaginary parts (which would also 

result in a more efficient code for a scalar machine), and we have 

used the identity 

(A+iB)(C+i D) = (A+B)(C-0)-BC + AD + i(BC+AD) (3.11) 

to perform the product of two complex matrices in terms of three real 

multiplications and five real matrix additions. Using complex 

arithmetic the product of two matrices would require four real 

multiplications and two additions. Due to the fact that matrix 

multiplication requires 2N 3 operations, where N is the dimension 

of the matrix, and matrix addition requires only N' operations, our 

method pays off even for N = 3 . 

A schematic outline of the flow of the calculations is shown 

in Fig. 3. 

4. Performance and Timings 

The figures quoted here are based on runs executed on a two-pipe, 

2m 64-bit words CDC CYBER 205. They apply to a 164 lattice (ns = 16, nt = 16), 

SU(3) gauge theory with 10 hits per link upgrade (unless stated explicitly 

otherwise). We present performance figures for both 64-bit and 32-bit 

arithmetic operations. In both modes the exponentiation and the generation 

of random numbers were carried out using 64-bit arithmetic. It should be 

noted here that due to our slicing .mechanism the 32-bit version requires 

real memory of only 852,000 words (64-bit words, or 6.8m bytes), so it 

actually fits comfortably on a lm words system. With these parameters 
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the code performs at 98% CPU utilization. The 64-bit version requires, 

of course, twice as much memory. 

In Table 4.1 we give the percentage of the execution time for the 

two arithmetic modes spent in the force (FE) and the Metropolis 

updating calculations. It becomes clear from these figures why it is 

worth while using a single force computation for a number of attempts at 

updating (rather than the one attempt proposed by the original Metropolis 

method). 

It should be added here the normalization procedure discussed in 

Sec. 3, performed every 5 iterations adds only 0.74% and 0.59% in 

64-bit and 32-bit modes, respectively, to the total execution time. 

Table 4.2 presents a percentage breakdown of the code by operation 

We. The reader will notice that the Gather, random number generation 

and the exponentiation operations are more heavily weighted in the 32-bit 

mode compared with that of the 64-bit mode. These three types of 

operations perform at the same rate in both modes. The last two 

execute in 64-bit mode in both versions of the code. The Gather instruction 

performs at the same rate regardless of whether the operands are 64-bit 

or 32-bit variables. This is because the performance of the Gather 

operation is driven by memory access (and not by computation complexity). 

The matrix multiplication, being made up of floating-point operations 

only, executes at near peak rate of 95 MFLOPS and 182 MFLOPS for the 

64-bit and 32-bit modes,respectively. The effect of vectorizing the 

random number generator can be illustrated by noting that this operation 

amounted to 6% (64-bit) and 11:; (32-bit) of the total time when it was 

not vectorized. The "action" involves taking the real part of the 

trace of products of SU(3) matrices (purely floating-point operations). 

The "acceptance" is the portion of the code where the conditional acceptance 
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of new UE matrices occurs under the control of a bit-vector 

created for that purpose. 

The actual time for one iteration of the 164 lattice 

with 10 hits is 16.27 sets. (64-bit) and 10.72 sets. (32-bit). This 

amounts to a substained performance rate of 66.8 MFLOPS (64-bit) and 

101.5 MFLOPS (32-bit). Another way, commonly used by physicists, to 

express the performance of Monte Carlo lattice gauge theories implemented 

on a computer system, is the link update time, i.e., the time needed 

to update one link of the lattice once. This measure is useful for 

comparisons since it is independent of the lattice size. The link 

update times (in usecs.) for our implementation are given in Table 4.3. 

These figures may be compared to a link update time of about 1,100 

usecs on the CDC 7600 computer system with a highly optimized code. 
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Table 3.1. Stream rate proportionality factor (a) . 

2 l/2 l/4 
4 l/4 7/8 

Table 4.1. Breakdown by percentage of sections 
of code. 

I 

64-bit ! 32-bit I 

force 

ioaate 

I 
43.49 

I ( 

I 
42.46 I 

I 
56.40 : 57.40 

Table 4.2. Breakdown by percentage of the main operation 
types. 

operation type 64-bit 

matrix multiplication 58.33 47.05 

Gather 20.78 29.27 

random number generator 0.95 1.83 

exponentiation 7.43 11.72 

action 5.93 4.70 

acceptance 3.62 3.01 

32-bit 
I 

Table 4.3. The upgrades times for a link (in vsecs). 

number of hits '64-bit 32-bit 

10 62.1 40.9 

8 55.1 36.3 
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Figure 1. "Forward" (upper half) and 
"backward" (lower-half) plaquettes in the 
P-V plane, where x 5 (x1,x2,x3,x41 is a 

point in our four-dimensional lattice. 
This is one out of three such planes which 
can be formed in a four-dimensional space. 

141 



“S
LI

C
ES

” 

O
N

 
D

IS
K 

I 
If 

un
ct

io
n 

1 
IN

 
M

EM
O

R
Y 

C
IR

C
U

LA
R

 

BU
FF

ER
 

Fi
gu

re
 

2.
 

Th
e 

I/O
 

sc
he

m
e.

 
In

 
ou

r 
im

pl
em

en
ta

tio
n 

th
e 

"in
" 

an
d 

"o
ut

" 
bo

xe
s 

oc
cu

py
 

th
e 

sa
m

e 
ph

ys
ic

al
 

m
em

or
y.

 



FLOW CHART 
new iteration I 

NEW TABLE 
new time-slice 

INITIATE PAGING 
I “colors”/directions (8 1 
I 

“FORCE” MATRICES 

METROPOLIS UPGRADING 
Random Gather from Table 
Matrix Multiply-“new”action 
Weight Factor (exponential) 
Acceptance Test: 

Random-rbi t vector-update 

1 RENORMALIZE 1 
1 (every 5 iterations) 1 

I I 

Figure 3. Schematic description of the computational 
process. 
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